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Abstract

In this paper we exploit a novel idea for the optimization of 
ows governed by the

Euler equations. The algorithm consists of marching on the design hypersurface while

improving the distance to the state and costate hypersurfaces. We consider the problem

of matching the pressure distribution to a desired one, subject to the Euler equations,

both for subsonic and supersonic 
ows. The rate of convergence to the minimum for

the cases considered is 3 to 4 times slower than that of the analysis problem. Results

are given for Ringleb 
ow and a shockless recompression case.
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1 Introduction

In recent years there has been a renewed interest in optimal design in 
uid mechanics.

Faster computers and reliable numerical simulations make feasible some of the aerodynamics

optimal design problems which are of engineering interest.

The statement above becomes only partially true when we consider either 
ows governed

by Euler or Navier-Stokes equations, or complicated geometrical con�gurations with many

control parameters. For such cases, shape optimization seems to be still not practical due

to extremely time consuming computation. The present work aims at a 
exible and feasible

approach for such intensive computational problems by applying a novel algorithm proposed

by Ta'asan in [19].

The problem of �nding a shape that achieves given performance has been attacked by

means of inverse problem formulations [12],[2],[21],[5]. These methods have in common the

advantage of being solved at the same cost of an analysis problem. They are in general not

extendable to three dimensions. Moreover the set of problems that can be solved by means

of inverse design is limited.

A more general framework is to consider aerodynamics design problems as optimization

problems. From the mathematical viewpoint the problem is to �nd U such that

(
U 2 U

E(U) � E(V ) 8V 2 U

where U is a given set and E is a real-valued functional de�ned on U .
Shape design optimization problems are tightly related to control of a system governed

by partial di�erential equations where the controls are on the boundary. Lions set in [13]
the mathematical framework for such problems. The theory is concerned mainly with linear
systems and is devoted \(i) to obtain necessary (or possibly necessary and su�cient) con-
ditions for U to be an extremum (or minimum), (ii) to study the structure and properties of

the equations expressing these conditions, (iii) to obtain constructive algorithms amenable
to numerical computations for the approximation of U".
Pironneau ([15],[16]) derived an adjoint method for the minimum-drag problem in Stokes


ows and subsequently in 
ows governed by the incompressible Navier-Stokes equations.

Since a Navier-Stokes solver was not available, some solutions were obtained using simpler

models; see Glowinski and Pironneau [6].

For the Euler equations Jameson proposed in [10] an adjoint method for wing design
which makes use of conformal mapping to control the shape of the wing. Iollo, Salas and
Ta'asan [9] studied the case of Euler 
ows with embedded shocks for a one-dimensional

case, and discussed the boundary conditions for the adjoint equations. At the shock location

it was shown that further conditions are needed for the adjoint equation to be well posed.
Subsequently, Iollo and Salas extended these results to two-dimensional 
ows, and presented

computations with higher-order spatial accuracy [8].
The high computational cost for solving optimization problems governed by 
uid dynamics

equations comes from several sources. The �rst is the cost of a single analysis, which for the
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Navier-Stokes equations in three dimensions is of the order of a few CRAY hours. Another

source is the fact that a repeated solution of the 
ow equations may be required for gradient

methods. An additional signi�cant cost may arise from the calculation of the gradient of

the functional.

The use of adjoint methods eliminates the unnecessary cost resulting from computation

of the gradient, and is much more e�cient compared to other methods including �nite-

di�erences and sensitivity analysis. It requires the computation of an extra system of

partial di�erential equations (PDEs), namely the costate equations, but the total cost for

gradient calculation is independent of the number of design variables. A comparison study

of calculating gradients using adjoint methods and �nite-di�erence methods was done by

Beux and Dervieux [3]. They also solved pressure reconstruction problems for compressible

internal 
ows, comparing the performances of several algorithms. Flows with embedded

shocks were not considered in this work.

The adjoint method, being an e�cient method for calculating the gradient, does not ad-

dress the computational expense related to the number of gradient iterations required to

reach the minimum. In general, the number of iterations required to achieve the minimum

grows more than linearly with the number of controls used, making infeasible design prob-

lems in three dimensions with many design variables.
Ta'asan proposed in [18] an algorithm to reduce the cost of the optimization to that of a

single analysis, namely the one shot method. The idea is to solve the 
ow equations, the
costate equations and the optimality condition at the same time. The main idea in that
algorithm was to perform the optimization iteration on coarse grids that are used anyway

in the multigrid process. Small numbers of design variables were considered in that case.
Ta'asan, Kuruvila and Salas [20] applied this technique to a potential 
ow, and extended

the method to cases of moderate numbers of design variables. Di�erent design variables
are associated with di�erent grids depending on the smoothness of the shape functions
associated with them, and are updated on these grids. The performance of this algorithm

was practically independent of the number of design variables.
Arian and Ta'asan [1] extended the one shot method to in�nite-dimensional design space.

The main idea of the method was to construct a relaxation that smoothes the errors in
the design variables. Application to control problems and shape design problems have

demonstrated solution of the full optimization problem in a cost comparable to that of solving

the analysis just a few times, independent of the number of design variables (experiments

using up to 128 design variables have been done).
Beux and Dervieux [4] proposed a hierarchical strategy in which the number of control

parameters is progressively increased performing a multilevel optimization that seems to

render the computational cost independent from the number of control parameters.

The drawbacks of the one shot methods are their programming complexity and the fact

that their use is limited to multigrid solvers. This was the motivation for the study of a new

type of solution strategy for optimization problems governed by PDEs [19]. The goal was to
try to get methods that solve the optimization problem in a cost comparable to that of the

analysis. The emphasize was on simplicity and 
exibility to work in existing frameworks
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which do not necessarily involve multigrid methods.

The main observation is the following. The solution of the optimization problem lies on

the intersection of the state, costate and design hypersurfaces (in the state, costate and

design spaces). Gradient-based methods (including adjoint formulations) can be viewed as

marching along the intersection of the state and costate hypersurfaces. This is an expensive

process since each step requires the solution of two PDEs. The idea of the pseudo-time

method was to perform the marching on the design hypersurface while improving the dis-

tance to the other two. The cost of such an iteration per step is signi�cantly smaller than

that of gradient-based methods. Its convergence has been shown by Ta'asan in [19] to be

independent of the number of design variables.

In the present paper we apply the pseudo-time method to optimization problem using the

Euler equations. Using this method the cost of optimization becomes of the same order as

that of analysis. Moreover the algorithm may be implemented with no substantial changes

to existing codes. Numerical results indicate that the method converges at a rate which is

independent of the number of design variables.

2 Problem statement

The Euler equations are given by

Ut + Fx +Gy = 0 (1)

where

U =

0
BBB@

�

�u

�v

�e

1
CCCA F =

0
BBB@

�u

p + �u2

�uv

u(�e+ p)

1
CCCA G =

0
BBB@

�v

�uv

p+ �v2

v(�e+ p)

1
CCCA

with

� = density

u = x-component of the velocity vector

v = y-component of the velocity vector

e = speci�c total energy

p = pressure

a = speed of sound


 = ratio of speci�c heats

� =

 � 1

2

and p = ��(2e� u2 � v2): Furthermore let

@F

@U
= A(U) and

@G

@U
= B(U) (2)
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We assume that these equations are de�ned on a domain � which includes a sub-domain


 whose boundary is denoted by �: On the boundary we de�ne a curvilinear coordinate s

and a normal n = (nx; ny) pointing outward. A real valued functional E(�; V (�)) is given,

where V (�) is the solution of the Euler equations with boundary conditions on �. The

optimization problem that we study is

minimize the functional E(�; V (�)) over all the admissible shapes of the boundary �:

We focus on the following model problem. The sub-domain 
 is represented by a nozzle;

see Fig. 1. At the inlet, total pressure, total temperature and the ratio � = v=u are �xed.

At the outlet, if the 
ow is subsonic, the static pressure is �xed and at the solid walls the

impermeability condition unx + vny = 0 is enforced. The upper wall is kept �xed. The

lower wall � is represented by mean of the parameterization

y(�) =
X
i

�ifi(x) (3)

where the functions fi(x) are some shape functions and � = (�1; :::; �i; :::) is the corres-
ponding set of shape coe�cients. Given a desirable lower wall pressure distribution p�(x)
and denoting by p�(x) the actual one on the lower wall, the optimization problem consists
in �nding a set of shape coe�cients �i such that the functional

E =
1

2

Z
b

a

(p� � p�)2dx (4)

is minimized.

3 Optimality conditions

The optimality conditions are derived by introducing Lagrange multipliers and considering

the augmented functional

L(U; �;�; �) = E(�;U) +
Z



t�(AUx +BUy)d
 +
Z
�

��V � nds (5)

whereV = (u; v):The vector�(x; y) = t(�1; �2; �3; �4), and the scalar �(s) are the Lagrange

multipliers.

Calculating the variation of the functional L with respect to the variation of the functions

U, �, � and the parameters �i respectively, we obtain (see [8])

�LU =
Z

b

a

@p

@U

�����
�

(p� � p�)fUdx+
Z
�

t�(Anx +Bny)fUds +

�

Z



(t�xA+ t�yB)fUd
 +
Z
�

�n
@�V

@U
fUds (6)
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where

@p

@U
= 2k

 
u2 + v2

2
;�u;�v; 1

!
and

@�V

@U
=

 
0 1 0 0

0 0 1 0

!

and

�L� =
Z



t e�(AUx +BUy)d
 (7)

�L� =
Z
�

~��V � nds (8)

�L� =
X
i

 Z
b

a

dp

dy

�����
�

(p� � p�) fi dx+
Z
�

t�(AUx +BUy) fi cos � ds+

+
Z
�

�
@(�V)

@y
� n fi ds �

Z
�

��V � t
dfi

dx
cos2 � ds +

+
Z
�

��V � n
dfi

dx
sin � cos � ds

!
~�i (9)

where � is the angle between the normal n and the y-axis, t = (�ny; nx); and fU; e�; ~� and
~�i are the variations of the corresponding arguments.

At the minimum of the functional, for all the possible choices of the functions fU; e�; ~�
and of the parameters ~�; we must have

�LU = �L� = �L� = �L� = 0: (10)

Therefore, we have
�L� = 0 , AUx +BUy = 0 on 


and
�L� = 0 , �V � n = 0 on �

which are the Euler equations and boundary conditions. Furthermore

�LU = 0 ,
tA�x +

tB�y = 0 on 
 (11)

and
@p

@U

�����
�

(pw � p�) cos � + t�(Anx +Bny) + �n
@�V

@U
= 0 on � (12)

where
� = �

h
�1 + u�2 + v�3 + (
e� kV 2)�4

i
(13)

For the boundary condition on inlet and outlet we refer the reader to [8]. Given U; the set

of costate eqs.(11-13) determine uniquely � in 
 and � on �. Finally, given � and knowing

U and �, we can calculate from eq.(9)

@L

@�i

=
Z

b

a

dp

dy

�����
�

(p� � p�) fi dx+
Z
�

t�(AUx +BUy) fi cos � ds+
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+
Z
�

�
@(�V)

@y
� n fi ds�

Z
�

��V � t
dfi

dx
cos2 � ds+

+
Z
�

��V � n
dfi

dx
sin � cos � ds (14)

In case of a shock occuring in the 
ow �eld, we split the domain of integration by means of

a curve � that coincides with the shock where it exists. Then we follow the same derivation

presented so far on each of the two sub-domains, regarding � as a boundary; see [8]. The

resulting extra condition for � on the shock is � = 0. It should be noted that if the

shocks are not treated properly, the problem of solving the costate equations with boundary

conditions is not well-posed. Jameson presented in [11] results for transonic 
ows over

airfoils where the wave-drag is minimized. He does not use any special treatment for the

shock but the costate equations converge. This is due to the fact that the scheme that

he uses for solving the Euler equations smears the shocks over several grid points, due to

arti�cial viscosity.

4 Pseudo-time optimization method

There are manymethods for obtaining the minimumof the functional L knowing its gradient
with respect to the controls. Adjoint methods involve the following steps:

1. Start with a set �i of shape coe�cients

2. Enforce �L� = 0 and �L� = 0 by �nding a U that satis�es the steady state Euler
equations and boundary conditions

3. Enforce �LU = 0 by �nding a � that satis�es the costate equations and boundary
conditions

4. Calculate r�L; if it is 0 we have found the minimum, otherwise

5. Update � with r�L, using a proper stepsize.

6. Restart from 2 until r�L = 0:

The need to repeat steps 2 and 3 above many times can become prohibitively expensive

for geometrically complex con�gurations requiring computational power near the limits of
present capabilities.
Ta'asan proposed in [19] an e�cient way of solving the optimization problem. The main

observation is the following. The solution of the optimization problem lies on the intersection

of the state, costate and design hypersurfeces (in the state, costate and design spaces).
Gradient based methods (including adjoint formulations) can be viewed as marching along

the intersection of the state and costate hypersurfaces. This is an expensive process since
each step requires the solution of two PDEs. The idea of the pseudo-time method was to

perform the marching on the design space while improving the distance to the other two.

Compare Fig. 2 and 3. The cost of such an iteration per step is signi�cantly smaller than
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that of gradient based methods. Its convergence has been shown by Ta'asan in [19] to be

independent of the number of design variables.

The design equation for a wide class of problems, including the one considered here, is

de�ned on the boundary only. Thus, it can be viewed as an extra boundary condition,

and the design variables as the additional variables to solve for. In some cases the design

equation can be solved for the design variables and a simple implementation of the above

idea exists. In other cases the design equation, viewed as an equation for the design variables

keeping the state and costate �xed, may be singular and a more involved implementation is

required. This is the case for the problem considered here. In such cases it is necessary to

solve for the design variables together with the state and costate variables in a small vicinity

of the boundary S.

Thus, at each step of computation on the entire �eld, the design equation is satis�ed

together with the boundary conditions for the state and costate equations. The solution on

the entire �eld 
 a�ects the result of the optimization on S through the values of U and �

on the auxiliary boundary 	; see Fig. 4.

The algorithm is as follows:

1. Start with a tentative set of �i:

2. March in time, on the entire �eld, the state equation a few steps.

3. March in time, on the entire �eld, the costate equation a few steps.

4. Solve in S the state equation with its boundary conditions, the costate equation with

its boundary conditions and compute r�L:

5. If r�L = 0; restart from step 2, repeating steps 3 and 4 until the state and costate

equations are converged on the entire �eld. Otherwise take �n+1

i
= �n

i
+ f(r�L) and

go to 4.

We took �n+1

i
= �n

i
� ar�L; where a is a parameter. One could try to solve the problem

on the boundary, in step 4 above, using a direct solver. The way we propose here has the
advantage of being a simple modi�cation of adjoint method, and therefore can be easily

implemented.

5 First optimization experiments

We introduce a discrete grid de�ned as (xl; ym) = (xo + l�x; y(�) + m�y) where �x is

constant and �y is a constant fraction of the local height of the nozzle; see Fig.5.
The steady solution of the Euler equations is obtained with a time-dependent technique,

in the frame of an explicit �nite volume code. The conservative variables U are computed

at the cell centers, and the 
uxes F and G are evaluated at the cell interfaces using the

approximate Riemann solver in [14]. Higher-order accuracy is achieved using an Essentially
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Non-Oscillatory scheme [7]. The 
ow �eld values at cell interfaces, used as initial conditions

for the Riemann problem, are reconstructed by means of a linear interpolation and using

a minimod limiter. The amplitude of the integration step is chosen according to the CFL

condition.

The costate equations are discretized on the same grid presented above. Since they have

no conservative form, the numerical solution is obtained using the �nite-di�erence scheme

proposed in [8].

The computations are performed on a 40� 20 grid. Total pressure and total temperature

at the inlet are taken to be unity and �(0; y) = 0: At the outlet the static pressure depends

on the test-case considered. For the lower wall ordinate y(�) we have

y(�) =

8><
>:

0 if �0:5 � x < 0P
4

i=1 �i x
i+1 (x� 1)2 if 0 � x < 1

0 if 1 � x < 1:5

We try to recover the pressure distribution obtained with the Euler solver, corresponding

to the set of shape coe�cients � = (0; 2; 2; 0). This means that the functional is 0 at

the minimum. The outlet pressure is such that the 
ow presents a relevant shock at re-
compression.
Figure 6 shows the functional values at each step of computation. Figure 7 shows the

the convergence history of the state equation, computed to second-order accuracy, and the
convergence history of the costate equation. Finally in Fig. 8, we present the starting
pressure distribution and the one obtained at the end of the optimization procedure.
The practicability of this approach depends on the rate of convergence to the minimum. In

fact the state and costate equations converge to the steady solution with a less favorable rate

compared to that of a simple analysis. It is easily seen that since the shape is changing, the

ow �eld must change accordingly and so must the residuals. Figure 9 shows a comparison
of the residuals for the state equations in the case of a simple analysis to the residuals in
the optimization case. The convergence rate is 3 to 4 times slower in the optimization case.
Considering the costate equations, the cost of the optimization procedure turns to be of the

order of 10 analyses; using the �rst of the two algorithms presented in Section 4 the factor

of proportion is 100 to 200 depending on the updating strategy used. The CPU time needed
on a DEC 3000/500 is 18 minutes with the algorithm presented. For the �rst algorithm of
Section 4, 6 hours of CPU time were needed.

The present rate of convergence could be improved by changing the way of updating

the grid. In fact, close to the minimum, the entire grid is perturbed to update only the

boundary. We believe that, close to the minimum, the rate of convergence can be improved

by updating only the boundary points of the grid. In fact, the small di�erence between
the desired pressure and the one obtained is due to the fact that close to the minimum

the convergence rate of the equations is reduced. Therefore the pressure p� is obtained

asymptotically.

8



6 Optimal shape for compressible 
ows

The following examples represent situations for which the optimal solution is not generated

with the same algorithm we used to study the optimization problem. In the �rst case, we

recover a pressure distribution known theoretically and compare the shape obtained with

the theoretical one.

The Ringleb 
ow (see [17]) is a two-dimensional steady compressible isentropic 
ow, where

subsonic, transonic and supersonic regions are represented. It describes a 180o-turn of a

compressible 
ow; all the exact values of the 
ow properties are given by simple formulas

dependent on the stream function and on the Mach number. We consider the portion of

the 
ow con�ned between two streamlines, which may be regarded as solid walls. The

maximumMach number on the bottom streamline is 1:6 and the minimum 0:8: On the top

streamline the maximum Mach number is 0:8. The theoretical Mach number isocontours

for such a 
ow are shown in Fig. 10.

The Ringleb pressure distribution on the bottom wall is taken as the desired distribution

that we want to achieve.

The lower wall is described by the following parameterization:

y(�) = r0 + (r1 � r0)
4X
i=1

�i sin(i �
� � �0

�1 � �0
)

where r0 is the distance, measured from the point of intersection of the lines from the inlet
and the outlet, to the �rst point on the lower wall and r1 is the distance to the last point.
The angles �0 and �1 are relative to the �rst and last point respectively, and are measured

from the line from the inlet.
In principle, if we try to recover the pressure distribution on the lower wall, the solution

is out of the design space. We don't have any a priori knowledge of the values that the �i

will assume and how close to the desired pressure we can get.
In Fig. 11 it is seen that no visible di�erence can be appreciated between the theoretical

wall shape and the optimal shape found. The points representing the two solutions do not
overlap since they are computed on two di�erent grids. In this case the functional eq.(4)

is 6:70 � 10�5 after 500 iterations of steps 2. and 3. of the second algorithm proposed. See

Fig. 12. The CPU time required for this case is about 20 minutes.
In the second case considered, we are concerned with a convergent nozzle. The lower wall

is represented by a parameterization similar to that above. The inlet Mach number is 2:2
and the grid is 80 � 40: The starting con�guration with pressure contourlines is shown in

Fig. 13.

A relevant shock is present in the 
ow �eld and our objective is to eliminate it by requiring
a smooth compression at the lower wall. The smooth pressure distribution is not perfectly

attained, as is seen in Fig. 14. Nevertheless the recompression appears to be smooth and
the shock is eliminated from the 
ow �eld (Fig. 15). These results are obtained after 200

iterations in about 35 minutes of CPU. The functional is decreased from 3:75 � 10�3 to
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1:35 � 10�4: The computation has been pursued for 2000 iterations and the functional value

remained unchanged.

Finally, an experiment using 8 shape coe�cients is performed. In Fig. 16 it is seen that

the convergence rates of the state and costate equations are not a�ected. The functional

minimum is therefore attained with the same number of iterations as in the case of 4 shape

coe�cients.

7 Conclusions

The pseudo-time method was applied to optimization problems governed by the Euler equa-

tions in two dimensions. The problem of matching the pressure distribution to a desired

one was considered, both for subsonic and supersonic 
ows. The rate of convergence to

the minimum for the cases considered is 3 to 4 times slower compared to that of the ana-

lysis problem. Results were obtained for Ringleb 
ow and a shockless recompression case.

The algorithm could be implemented with no substantial changes to existing adjoint based

codes. Numerical results indicate that the method converges at a rate which is independent

of the number of design variables. The method o�ers a powerful and inexpensive tool for
the study of non-intuitive con�gurations for aerodynamic design.
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A

B

S

C

Design space

Optimality
All solutions of costate
equations and boundary
conditions

All solutions of state 
equations and boundary
conditions

Figure 2: Point A represents the desired optimum, point B the starting con�guration. In

the standard adjoint method, point A is reached by following a narrow path corresponding
to the intersection of plane S and C. At each step along A � B, the state and costate

equations are iterated many times.
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Figure 3: In the new approach a new path, A�B, is taken lying on the plane T representing
all solutions to the design equation and the boundary conditions of state and costate equa-

tions. The computational cost of working on this plane is equivalent to solving a problem

one space dimension less than the original problem. The solution of the state and costate
equations is achieved only when point A is reached.
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Figure 4: Domain of integration and auxiliary boundary 	.

Figure 5: Discrete grid.
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Figure 6: Logarithm of the functional versus the number of iterations on the entire �eld.
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Figure 7: Convergence history for state and costate equations. Logarithm of the residuals.

16



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40

Target distribution
Optimal distribution
Starting Distribution

Figure 8: Target pressure distribution and optimal one. Starting pressure: constant distri-
bution at 0.7 reference value.
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Figure 9: Convergence history of state equations in a simple analysis compared to the

convergence of the state equations in an optimization procedure.
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Figure 10: Ringleb 
ow: Mach number isocontours.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Ringleb flow streamline
Optimal shape
Starting shape

Figure 11: Ringleb 
ow: starting con�guration, theoretical solution and optimal shape.
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Figure 12: Logarithm of the functional versus the number of iterations on the entire �eld.

Figure 13: Convergent nozzle starting con�guration: pressure isocontours.
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Figure 14: Convergent nozzle: desired pressure distribution and optimal one.

Figure 15: Convergent nozzle optimal solution: pressure isocontours.
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Figure 16: Convergent nozzle. State and costate convergence history: 4 shape coe�cients

versus 8 shape coe�cients.
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